
UNIT I 

Measures of Central Tendency 

Introduction 

A measure of central tendency is a single value that attempts to describe a set of data by 

identifying the central position within that set of data. As such, measures of central 

tendency are sometimes called measures of central location. They are also classed as 

summary statistics. The mean (often called the average) is most likely the measure of 

central tendency that you are most familiar with, but there are others, such as the median 

and the mode. 

The mean, median and mode are all valid measures of central tendency, but under 

different conditions, some measures of central tendency become more appropriate to use 

than others. In the following sections, we will look at the mean, mode and median, and 

learn how to calculate them and under what conditions they are most appropriate to be 

used. 

Mean (Arithmetic) 

The mean (or average) is the most popular and well known measure of central tendency. 

It can be used with both discrete and continuous data, although its use is most often with 

continuous data (see our Types of Variable guide for data types). The mean is equal to 

the sum of all the values in the data set divided by the number of values in the data set. 

So, if we have n values in a data set and they have values x1, x2, ..., xn, the sample mean, 

usually denoted by  (pronounced x bar), is: 

 

This formula is usually written in a slightly different manner using the Greek capitol 

letter, , pronounced "sigma", which means "sum of...": 

https://statistics.laerd.com/statistical-guides/types-of-variable.php


 

You may have noticed that the above formula refers to the sample mean. So, why have 

we called it a sample mean? This is because, in statistics, samples and populations have 

very different meanings and these differences are very important, even if, in the case of 

the mean, they are calculated in the same way. To acknowledge that we are calculating 

the population mean and not the sample mean, we use the Greek lower case letter "mu", 

denoted as µ: 

 

The mean is essentially a model of your data set. It is the value that is most common. You 

will notice, however, that the mean is not often one of the actual values that you have 

observed in your data set. However, one of its important properties is that it minimises 

error in the prediction of any one value in your data set. That is, it is the value that 

produces the lowest amount of error from all other values in the data set. 

An important property of the mean is that it includes every value in your data set as part 

of the calculation. In addition, the mean is the only measure of central tendency where 

the sum of the deviations of each value from the mean is always zero. 

When not to use the mean 

The mean has one main disadvantage: it is particularly susceptible to the influence of 

outliers. These are values that are unusual compared to the rest of the data set by being 

especially small or large in numerical value. For example, consider the wages of staff at a 

factory below: 

Staff 1 2 3 4 5 6 7 8 9 10 

Salary 15k 18k 16k 14k 15k 15k 12k 17k 90k 95k 

The mean salary for these ten staff is $30.7k. However, inspecting the raw data suggests 

that this mean value might not be the best way to accurately reflect the typical salary of a 

worker, as most workers have salaries in the $12k to 18k range. The mean is being 

skewed by the two large salaries. Therefore, in this situation, we would like to have a 



better measure of central tendency. As we will find out later, taking the median would be 

a better measure of central tendency in this situation. 

Another time when we usually prefer the median over the mean (or mode) is when our 

data is skewed (i.e., the frequency distribution for our data is skewed). If we consider the 

normal distribution - as this is the most frequently assessed in statistics - when the data is 

perfectly normal, the mean, median and mode are identical. Moreover, they all represent 

the most typical value in the data set. However, as the data becomes skewed the mean 

loses its ability to provide the best central location for the data because the skewed data is 

dragging it away from the typical value. However, the median best retains this position 

and is not as strongly influenced by the skewed values. This is explained in more detail in 

the skewed distribution section later in this guide. 

Median 

The median is the middle score for a set of data that has been arranged in order of 

magnitude. The median is less affected by outliers and skewed data. In order to calculate 

the median, suppose we have the data below: 

65 55 89 56 35 14 56 55 87 45 92 

We first need to rearrange that data into order of magnitude (smallest first): 

14 35 45 55 55 56 56 65 87 89 92 

Our median mark is the middle mark - in this case, 56 (highlighted in bold). It is the 

middle mark because there are 5 scores before it and 5 scores after it. This works fine 

when you have an odd number of scores, but what happens when you have an even 

number of scores? What if you had only 10 scores? Well, you simply have to take the 

middle two scores and average the result. So, if we look at the example below: 

65 55 89 56 35 14 56 55 87 45 

We again rearrange that data into order of magnitude (smallest first): 

14 35 45 55 55 56 56 65 87 89 



Only now we have to take the 5th and 6th score in our data set and average them to get a 

median of 55.5. 

Mode 

The mode is the most frequent score in our data set. On a histogram it represents the 

highest bar in a bar chart or histogram. You can, therefore, sometimes consider the mode 

as being the most popular option. An example of a mode is presented below: 

 

Normally, the mode is used for categorical data where we wish to know which is the 

most common category, as illustrated below: 



 

We can see above that the most common form of transport, in this particular data set, is 

the bus. However, one of the problems with the mode is that it is not unique, so it leaves 

us with problems when we have two or more values that share the highest frequency, 

such as below: 



 

We are now stuck as to which mode best describes the central tendency of the data. This 

is particularly problematic when we have continuous data because we are more likely not 

to have any one value that is more frequent than the other. For example, consider 

measuring 30 peoples' weight (to the nearest 0.1 kg). How likely is it that we will find 

two or more people with exactly the same weight (e.g., 67.4 kg)? The answer, is probably 

very unlikely - many people might be close, but with such a small sample (30 people) and 

a large range of possible weights, you are unlikely to find two people with exactly the 

same weight; that is, to the nearest 0.1 kg. This is why the mode is very rarely used with 

continuous data. 

Another problem with the mode is that it will not provide us with a very good measure of 

central tendency when the most common mark is far away from the rest of the data in the 

data set, as depicted in the diagram below: 



 

In the above diagram the mode has a value of 2. We can clearly see, however, that the 

mode is not representative of the data, which is mostly concentrated around the 20 to 30 

value range. To use the mode to describe the central tendency of this data set would be 

misleading. 

Harmonic Mean Definition: 

Harmonic mean is used to calculate the average of a set of numbers. Here the number of 

elements will be averaged and divided by the sum of the reciprocals of the elements. The 

Harmonic mean is always the lowest mean. 

Harmonic Mean Formula : 

Harmonic Mean = N/(1/a1+1/a2+1/a3+1/a4+.......+1/aN) Where,  

X = Individual score N = Sample size (Number of scores) 

Harmonic Mean Example: 

To find the Harmonic Mean of 1,2,3,4,5. 

Step 1: 

Calculate the total number of values. N = 5 



Step 2: 

Now find Harmonic Mean using the above formula. N/(1/a1+1/a2+1/a3+1/a4+.......+1/aN) 

= 5/(1/1+1/2+1/3+1/4+1/5) = 5/(1+0.5+0.33+0.25+0.2) = 5/2.28 So, Harmonic Mean = 

2.19 This example will guide you to calculate the harmonic mean manually. 

Geometric Mean Definition: 

Geometric mean is a kind of average of a set of numbers that is different from the 

arithmetic average. The geometric mean is well defined only for sets of positive real 

numbers. This is calculated by multiplying all the numbers (call the number of numbers 

n), and taking the nth root of the total. A common example of where the geometric mean 

is the correct choice is when averaging growth rates. 

Formula: 

Geometric Mean : 

Geometric Mean = ((X1)(X2)(X3)........(XN))1/N  

where 

X = Individual score N = Sample size (Number of scores) 

Geometric Mean Example: 

To find the Geometric Mean of 1,2,3,4,5. 

Step 1: 

N = 5, the total number of values. Find 1/N. 1/N = 0.2 

Step 2: 

Now find Geometric Mean using the formula. ((1)(2)(3)(4)(5))0.2 = (120)0.2 So, 

Geometric Mean = 2.60517 This example will guide you to calculate the geometric mean 

manually. 

Combined Mean 

Example 

  Series A Series A 

Mean 50 40 

Standard deviation 5 6 

No. of items 100 150 

Find the combined mean of the two series. 

Solution 

X‾12 = N1X1 + N2 X2 / N1 + N2 

= (100×50)+ (150×40))/(100+150)=11,000/250=44 

   



UNIT II 

Range:  The simplest of our methods for measuring dispersion is range.  Range is the 

difference between the largest value and the smallest value in the data set.  While being 

simple to compute, the range is often unreliable as a measure of dispersion since it is 

based on only two values in the set.  

 
A range of 50 tells us very little about how the values are dispersed.   

Are the values all clustered to one end with the low value (12) or the high value (62) 

being an outlier? 

Or are the values more evenly dispersed among the range? 

Standard Deviation:  Standard deviation is the square root of the variance.  The 

formulas are: 

 

 

 

Variance:  To find the variance: 

     • subtract the mean, , from each of the values in the data set, . 

     • square the result 

     • add all of these squares 

     • and divide by the number of values in the data set. 

 

 

 



 

Combined Standard deviation 

Example 

  Series A Series A 

Mean 50 40 

Standard deviation 5 6 

No. of items 100 150 

Find the combined standard deviation of the two series. 

σ12 = √ N1(σ1
2 + d1

2) + N2 (σ2
2 + d2

2) / N1+ N2 

 d1 = (X‾1 - X‾12) = 50 - 44 = 6 

 d2 = (X‾2 - X‾12) = 40 - 44 = 4 

 σ12 = √(100 [ (52+ 62) ]+ 150 [62+ (-42 )]) / (100+150))) 

  = √((2500+3600+5400+2400)/250)  = √(13,900/250) 

 = √55.6=7.46 

Coefficient of Variation 

A coefficient of variation (CV) is a statistical measure of the dispersion of data points in a 

data series around the mean. It is calculated as follows: 

  

 

The coefficient of variation represents the ratio of the standard deviation to the mean, and 

it is a useful statistic for comparing the degree of variation from one data series to 

another, even if the means are drastically different from each other. 

 

 

 

 

 

http://www.investopedia.com/terms/d/dispersion.asp
http://www.investopedia.com/terms/s/standarddeviation.asp


UNIT III 

In correlation, when values of one variable increase with the increase in another variable, it is 

supposed to be a positive correlation. On the other hand, if the values of one variable decrease 

with the decrease in another variable, then it would be a negative correlation. There might be 

the case when there is no change in a variable with any change in another variable. In this case, 

it is defined as no correlation between the two. 

 

Correlation can be of three types as follows: 

1. Simple correlation 

2. Multiple correlation 

3. Partial correlation 

Correlation Definition 

The relationship between more than one variable is considered as correlation. Correlation is 

considered as a number which can be used to describe the relationship between two 

variables. Simple correlation is defined as a variation related amongst any two variables.  

The multiple correlation and partial correlation are categorized as related variation among three 

or more variables. Two variables are correlated only when they vary in such a way that the higher 

and lower values of one variable corresponds to the higher and lower values of the other variable. 

We might also get to know if they are correlated when the higher value of one variable 

corresponds with the lower value of the other. 

Correlation Symbol 

Symbol of correlation = r 

Correlation Formula 

 
The formula for correlation is as follows, 
 
Correlation (r) 

= N∑XY−(∑X)(∑Y)[N∑X2−(∑X)2][N∑Y2−(∑Y)2]√N∑XY−(∑X)(∑Y)[N∑
X2−(∑X)2][N∑Y2−(∑Y)2] 
 
Where, 
x and y are the variables. 
b = the slope of the regression line is also called as the regression coefficient 
a = intercept point of the regression line which is in the y-axis. 
N = Number of values or elements 
X = First Score 
Y = Second Score 



∑XY∑XY = Sum of the product of the first and Second Scores 

∑X∑X = Sum of First Scores 

∑Y∑Y = Sum of Second Scores 

∑X2∑X2 = Sum of square first scores. 

∑Y2∑Y2 = Sum of square second scores. 

 

Coefficient of Correlation 
Coefficient of correlation, r, called the linear correlation coefficient, measures the strength and the 
direction of a linear relationship between two variables. It also called as Pearson product moment 
correlation coefficient. The algebraic method of measuring the correlation is called the coefficient 
of correlation. There are mainly three coefficients of correlation 

 

1. Karl Pearson’s Coefficient of correlation 

2. Pearson’s rank correlation coefficient 

3. Concurrent correlation 

Interpretation of Karl Pearson’s Coefficient of correlation 
 
Karl Pearson’s Coefficient of correlation denoted by r is the degree of correlation between two 
variables. r takes values between –1 and 1 
 
When r is –1, we say there is perfect negative correlation.  
When r is a value between –1 and 0, we say that there is a negative correlation 
When r is 0, we say there is no correlation 
When r is a value between 0 and 1, we say there is a positive correlation 
When r is 1, we say there is a perfect positive correlation. 
 
Properties of the Coefficient of correlation 

 

1. Coefficient of correlation has a well defined formula 

2. Coefficient of correlation is a number and is independent of the unit of measurement 

3. Coefficient of correlation lies between –1 and 1 

4. Coefficient of correlation between x and y will be same as that between y and x. 

Types of Correlation 
 
There are different types of Correlation. They are listed as follows: 

 

Positive Correlation 
 
A positive correlation is a correlation in the same direction. 
 

 

Negative Correlation 
 
A negative correlation is a correlation in the opposite direction. 



 

 

Partial Correlation 
 
The correlation is partial if we study the relationship between two variables keeping all other 
variables constant. 

 

Example: 

The Relationship between yield and rainfall at a constant temperature is partial correlation. 

Linear Correlation 

When the change in one variable results in the constant change in the other variable, we say the 

correlation is linear. When there is a linear correlation, the points plotted will be in a straight line 

 

Example: 

Consider the variables with the following values. 

X:  10  20  30  40  50  

Y: 20 40 60 80 100 

 
Here, there is a linear relationship between the variables. There is a ratio 1:2 at all points. Also, if 
we plot them they will be in a straight line. 
 

 

Zero Order Correlation  
 
One of the most common and basic techniques for analyzing the relationships between variables 
is zero-order correlation. The value of a correlation coefficient can vary from -1 to +1. A -1 
indicates a perfect negative correlation, while a +1 indicates a perfect positive correlation. A 
correlation of zero means there is no relationship between the two variables. 
 

 

Scatter Plot Correlation  
 
A scatter plot is a type of mathematical diagram using cartesian coordinates to display values for 
two variables for a set of data. Scatter plots will often show at a glance whether a relationship 
exists between two sets of data. The data displayed on the graph resembles a line rising from left 
to right. Since the slope of the line is positive, there is a positive correlation between the two sets 
of data. 
 



 
 

 

Spearman's Correlation 
 
Spearman's rank correlation coefficient allows us to identify easily the strength of correlation 
within a data set of two variables, and whether the correlation is positive or negative. The 

Spearman coefficient is denoted with the Greek letter rho (ρ). 

 
 
 

 

Non Linear Correlation 
 
When the amount of change in one variable is not in a constant ratio to the change in the other 
variable, we say that the correlation is non linear. 
 
Example:  
 
Consider the variables with the following values 

 

X: 10 20  30  40  50  

Y: 10 30 70 90 120 

 
Here there is a non linear relationship between the variables. The ratio between them is not fixed 
for all points. Also if we plot them on the graph, the points will not be in a straight line. It will be a 



curve. 
 
 
Non linear correlation is also known as curvilinear correlation. 

 

Simple Correlation 
 
If there are only two variable under study, the correlation is said to be simple.  
 
Example: 
 
The correlation between price and demand is simple. 
 

 

Multiple Correlations 
 
When one variable is related to a number of other variables, the correlation is not simple. It is 
multiple if there is one variable on one side and a set of variables on the other side.  
 
Example: 
 
Relationship between yield with both rainfall and fertilizer together is multiple correlations 
 

 

Weak Correlation 
 
The range of the correlation coefficient between -1 to +1. If the linear correlation coefficient takes 
values close to 0, the correlation is weak. 

Positive Correlation 
 

 
A relationship between two variables in which both variables move in same directions. A positive 
correlation exists when as one variable decreases, the other variable also decreases and vice 
versa. When the values of two variables x and y move in the same direction, the correlation is 
said to be positive. That is in positive correlation, when there is an increase in x, there will be 
and an increase in y also. Similarly when there is a decrease in x, there will be a decrease in y 
also. 
 

 

Positive Correlation Example 
 
Price and supply are two variables, which are positively correlated. When Price increases, supply 
also increases; when price decreases, supply decreases. 
 

 

Positive Correlation Graph 



 

 
 

 

Strong Positive Correlation 
 
A strong positive correlation has variables that has the same changes, but the point are more 
close together and form a line. 
 



 
 

 

Weak Positive Correlation 
 
A weak positive correlation has variables that has the same changes but the points on the graph 
are dispersed. 



 

 
Negative Correlation 
 

 
In a negative correlation, as the values of one of the variables increase, the values of the second 
variable decrease or the value of one of the variables decreases, the value of the other variable 
increases. When the values of two variables x and y move in opposite direction, we say 
correlation is negative. That is in negative correlation, when there is an increase in x, there will be 
a decrease in y. Similarly when there is a decrease in x, there will be an increase in y increase. 
 

 

Negative Correlation Example 
 
When price increases, demand also decreases; when price decreases, demand also increases. 
So price and demand are negatively correlated. 
 

 

Perfect Negative Correlation 
 
The closer the correlation coefficient is either -1 or +1, the stronger the relationship is between 
the two variables. A perfect negative correlation of -1.0 indicated that for every member of the 
sample, higher score on one variable is related to a lower score on the other variable. 

 
 



Correlation Data Sets 
 
In statistics, some times we will have to study the relationship between two or more variables. 
The statistical technique used to study the relationships between the variables is called the 
correlation technique. Correlation analysis is the analysis of association between two or more 
variables. The tendency of two or more variables to vary together directly or inversely is called as 
correlation.  
 
Two variables are said to be correlated, if the change in one of the variable results in a 
corresponding change in the other variable. That is, when two variables move together, they are 
said to be correlated. 
 
Let us take an example to understand the term correlation. In a given data with heights and 
weights of students in a school, we can assume that students with a more height would have a 
more weight. Besides, it is assumed that students who have short height will have less weight.  

 
Correlation Analysis 
 
Correlation is a term that refers to the strength of a relationship between two variables. 
Correlation and regression analysis are related in the sense that both deal with relationships 
among variables. The correlation coefficient is a measure of linear association between two 
variables. Values of the correlation coefficient are always between -1 and +1. The value of -1 
represents a perfect negative correlation while a value of +1 represents a perfect positive 
correlation. A value of 0 means that there is no relationship between the variables being tested. 
 
Interpretation of coefficient of correlation based on the error likely 

 

1. If the coefficient of correlation is less than the error likely, then its not significant 

2. If the coefficient of correlation is more than six times the error likely, it is significant. 

3. If the error is too small and coefficient of correlation is 0.5 or more then the coefficient of 

correlation is significant. 

 
 
The values of r between 0 and 1 are said to have a limited degree of correlation. A limited degree 
of correlation may be positive or negative. Limited correlation can be high, moderate or low based 
on whether it is close to 1 or 0. 

 
Covariance Correlation 
 
Covariance and correlation are both describe the degree of similarity between two random 
variables. Suppose that X and Y are real-valued random variables for the experiment with means 
E(X), E(Y) and variances var(X), var(Y), respectively. The covariance of X and Y is defined by 
 
cov(X, Y) = E[(X - E(X))(Y - E(Y))] 
 
and the correlation of X and Y is defined by 
 

cor(X, Y) = cov(X,Y)std(X)std(Y)cov(X,Y)std(X)std(Y). 



Cross Correlation 
 
The cross correlation function is a measure of the similarity between two data sets. One set is 
displaced related to the other, corresponding values of the two sets are multiplied together and 
the product are summed to give the value of the cross correlation. Whenever two sets are almost 
same, the product will be positive and the cross correlation is large. When set are unlike, some of 
the products will be positive and some negative and the sum will be small. 

 

Correlation Examples 

Given below are some examples to calculate correlation. 

Solved Example 

Question: 

To determine the correlation value for the given set of X and Y values: 

X 

Values 

Y 

Values 

21 2.5 

23 3.1 

37 4.2 

19 5.6 

24 6.4 

33 8.4 

 

Solution: 

Let us count the number of values. 

N = 6 

Determine the values for XY, X2, Y2 

X 

Value 

Y 

Value 
X*Y X*X 

Y*Y 

21 2.5 52.5 441 6.25 

23 3.1 71.3 529 9.61 

37 4.2 155.4 1369 17.64 

19 5.6 106.4 361 31.36 

24 6.4 153.6 576 40.96 

33 8.4 277.2 1089 70.56 

Determine the following values ∑X∑X , ∑Y∑Y , ∑XY∑XY , ∑X2∑X2 , ∑y2∑y2. 

∑X=157∑X=157 

∑Y=30.2∑Y=30.2 

∑XY=816.4∑XY=816.4 



∑X2=4365∑X2=4365 

∑Y2=176.38∑Y2=176.38 

 

Correlation (r) 

= N∑XY−(∑X)(∑Y)[N∑X2−(∑X)2][N∑Y2−(∑Y)2]/√N∑XY−(∑X)(∑Y)[N∑
X2−(∑X)2][N∑Y2−(∑Y)2] 
 

= 157(1541)(146.24)/√157(1541)(146.24) 
 

(r)=0.33 

 

 

Correlation 

Coefficient, r : 

   The quantity r, called the linear correlation coefficient, measures the 

strength and  

      the direction of a linear relationship between two variables. The linear 

correlation 

       coefficient is sometimes referred to as the Pearson product moment 

correlation coefficient in 

       honor of its developer Karl Pearson. 

   The mathematical formula for computing r is: 

                              

                                   where n is the number of pairs of data. 

           (Aren't you glad you have a graphing calculator that computes this 

formula?) 

   The value of r is such that -1 < r < +1.  The + and – signs are used for 

positive 

      linear correlations and negative linear correlations, respectively.   

   Positive correlation:    If x and y have a strong positive linear 

correlation, r is close 

      to +1.  An r value of exactly +1 indicates a perfect positive fit.   Positive 

values 

      indicate a relationship between x and y variables such that as values 



for x increases, 

      values for  y also increase.  

   Negative correlation:   If x and y have a strong negative linear 

correlation, r is close 

     to -1.  An r value of exactly -1 indicates a perfect negative fit.   Negative 

values 

     indicate a relationship between x and y such that as values for x increase, 

values 

     for y decrease.  

   No correlation:  If there is no linear correlation or a weak linear 

correlation, r is 

     close to 0.  A value near zero means that there is a random, nonlinear 

relationship 

     between the two variables 

   Note that r is a dimensionless quantity; that is, it does not depend on the 

units  

     employed. 

   A perfect correlation of ± 1 occurs only when the data points all lie exactly 

on a 

     straight line.  If r = +1, the slope of this line is positive.  If r = -1, the slope 

of this 

     line is negative.   

   A correlation greater than 0.8 is generally described as strong, whereas a 

correlation 

      less than 0.5 is generally described as weak.  These values can vary based 

upon the 

     "type" of data being examined.  A study utilizing scientific data may require 

a stronger 

      correlation than a study using social science data.   

 

  

Coefficient of Determination, r 2  

or  R2 : 

   The coefficient of determination, r 2, is useful because it gives the 

proportion of  

      the variance (fluctuation) of one variable that is predictable from the other 

variable. 

      It is a measure that allows us to determine how certain one can be in 



making 

      predictions from a certain model/graph. 

   The coefficient of determination is the ratio of the explained variation to the 

total 

      variation. 

   The coefficient of determination is such that 0 <  r 2 < 1,  and denotes the 

strength 

      of the linear association between x and y.   

   The coefficient of determination represents the percent of the data that is the 

closest 

      to the line of best fit.  For example, if r = 0.922, then r 2 = 0.850, which 

means that 

      85% of the total variation in y can be explained by the linear relationship 

between x 

      and y (as described by the regression equation).  The other 15% of the total 

variation 

      in y remains unexplained. 

   The coefficient of determination is a measure of how well the regression 

line 

      represents the data.  If the regression line passes exactly through every 

point on the 

      scatter plot, it would be able to explain all of the variation. The further the 

line is 

      away from the points, the less it is able to explain. 

Correlation coefficients are used in statistics to measure how strong a relationship is between 

two variables. There are several types of correlation coefficient: Pearson’s correlation or Pearson 

correlation is a correlation coefficientcommonly used in linear regression. 

Sample question: Find the value of the correlation coefficient from the following table: 

S U B J E C T  A G E  X  G L U C O S E  L E V E L  Y  

1 43 99 

2 21 65 

3 25 79 

4 42 75 

5 57 87 

http://www.statisticshowto.com/what-is-the-pearson-correlation-coefficient/
http://www.statisticshowto.com/what-is-the-pearson-correlation-coefficient/


6 59 81 

Step 1:Make a chart. Use the given data, and add three more columns: xy, x2, and y2. 

S U B J E C T  A G E  X  G L U C O S E  L E V E L  Y  X Y  X 2  Y 2  

1 43 99    

2 21 65    

3 25 79    

4 42 75    

5 57 87    

6 59 81    

Step 2::Multiply x and y together to fill the xy column. For example, row 1 would be 43 × 99 = 4,257. 

S U B J E C T  A G E  X  G L U C O S E  L E V E L  Y  X Y  X 2  Y 2  

1 43 99 4257   

2 21 65 1365   

3 25 79 1975   

4 42 75 3150   

5 57 87 4959   

6 59 81 4779   

Step 3: Take the square of the numbers in the x column, and put the result in the x2 column. 

S U B J E C T  A G E  X  G L U C O S E  L E V E L  Y  X Y  X 2  Y 2  

1 43 99 4257 1849  

2 21 65 1365 441  

3 25 79 1975 625  

4 42 75 3150 1764  

5 57 87 4959 3249  



6 59 81 4779 3481  

Step 4: Take the square of the numbers in the y column, and put the result in the y2 column. 

S U B J E C T  A G E  X  G L U C O S E  L E V E L  Y  X Y  X 2  Y 2  

1 43 99 4257 1849 9801 

2 21 65 1365 441 4225 

3 25 79 1975 625 6241 

4 42 75 3150 1764 5625 

5 57 87 4959 3249 7569 

6 59 81 4779 3481 6561 

Step 5: Add up all of the numbers in the columns and put the result at the bottom.2 column. The Greek 

letter sigma (Σ) is a short way of saying “sum of.” 

S U B J E C T  A G E  X  G L U C O S E  L E V E L  Y  X Y  X 2  Y 2  

1 43 99 4257 1849 9801 

2 21 65 1365 441 4225 

3 25 79 1975 625 6241 

4 42 75 3150 1764 5625 

5 57 87 4959 3249 7569 

6 59 81 4779 3481 6561 

Σ 247 486 20485 11409 40022 

Step 6:Use the following correlation coefficient formula. 

 

The answer is: 2868 / 5413.27 = 0.529809 

http://www.statisticshowto.com/what-is-the-correlation-coefficient-formula/
http://www.statisticshowto.com/wp-content/uploads/2009/11/pearsons.gif


Click here if you want easy, step-by-step instructions for solving this formula. 

From our table: 

 Σx = 247 

 Σy = 486 

 Σxy = 20,485 

 Σx2 = 11,409 

 Σy2 = 40,022 

 n is the sample size, in our case = 6 

The correlation coefficient = 

 6(20,485) – (247 × 486) / [√[[6(11,409) – (2472)] × [6(40,022) – 4862]]] 

=0.5298 

The range of the correlation coefficient is from -1 to 1. Our result is 0.5298 or 52.98%, which 

means the variables have a moderate positive correlation. 

Pearson’s Correlation Coefficient returns a value of between -1 and +1. A -1 means there is a 

strong negative correlation and +1 means that there is a strong positive correlation. This can 

initially be a little hard to wrap your head around (who likes to deal with negative numbers?). 

The Political Science Department at Quinnipiac University posted this useful list of the meaning of 

Pearson’s Correlation coefficients. They note that these are “crude estimates” for interpreting 

strengths of correlations using Pearson’s Correlation: 

r value =  

+.70 or higher Very strong positive relationship 

+.40 to +.69 Strong positive relationship 

+.30 to +.39 Moderate positive relationship 

+.20 to +.29 weak positive relationship 

+.01 to +.19 No or negligible relationship 

0 No relationship 

-.01 to -.19 No or negligible relationship 

-.20 to -.29 weak negative relationship 

-.30 to -.39 Moderate negative relationship 

-.40 to -.69 Strong negative relationship 

http://www.statisticshowto.com/help-with-statistics-equations/
http://www.statisticshowto.com/find-sample-size-statistics/
http://faculty.quinnipiac.edu/libarts/polsci/Statistics.html


-.70 or higher Very strong negative relationship 

It may be helpful to see graphically what these correlations look like: 

 

Graphs showing a correlation of -1 (a negative correlation), 0 and +1 (a positive correlation) 

The images show that a strong negative correlation means that the graph has a downward slope 

from left to right: as the x-values increase, the y-values get smaller. A strong positive correlation 

means that the graph has an upward slope from left to right: as the x-values increase, the y-

values get larger. 

Regression Definition: 

A regression is a statistical analysis assessing the association between two variables. It is used to 

find the relationship between two variables. 

Regression Formula: 

Regression Equation(y) = a + bx Slope(b) = (NΣXY - (ΣX)(ΣY)) / (NΣX2 - 

(ΣX)2) Intercept(a) = (ΣY - b(ΣX)) / N Where,  

x and y are the variables. b = The slope of the regression line a = The intercept point of the regression line and the y axis. N = 

Number of values or elements X = First Score Y = Second Score ΣXY = Sum of the product of first and Second Scores ΣX = Sum 

of First Scores ΣY = Sum of Second Scores ΣX2 = Sum of square First Scores 

Regression Example: 

To find the Simple/Linear Regression of 

X Values Y Values 

60 3.1 

61 3.6 

62 3.8 

63 4 

65 4.1 

To find regression equation, we will first find slope, intercept and use it to form regression 

equation. 

Step 1: 

http://www.statisticshowto.com/wp-content/uploads/2012/10/pearson-2-small.png


Count the number of values. N = 5 

Step 2: 

Find XY, X2 See the below table 

X Value Y Value X*Y X*X 

60 3.1 60 * 3.1 = 186 60 * 60 = 3600 

61 3.6 61 * 3.6 = 219.6 61 * 61 = 3721 

62 3.8 62 * 3.8 = 235.6 62 * 62 = 3844 

63 4 63 * 4 = 252 63 * 63 = 3969 

65 4.1 65 * 4.1 = 266.5 65 * 65 = 4225 

Step 3: 

Find ΣX, ΣY, ΣXY, ΣX2. ΣX = 311 ΣY = 18.6 ΣXY = 1159.7 ΣX2 = 19359 

Step 4: 

Substitute in the above slope formula given. Slope(b) = (NΣXY - (ΣX)(ΣY)) / (NΣX2 - (ΣX)2) = 

((5)*(1159.7)-(311)*(18.6))/((5)*(19359)-(311)2) = (5798.5 - 5784.6)/(96795 - 96721) = 

13.9/74 = 0.19 

Step 5: 

Now, again substitute in the above intercept formula given. Intercept(a) = (ΣY - b(ΣX)) / N = 

(18.6 - 0.19(311))/5 = (18.6 - 59.09)/5 = -40.49/5 = -8.098 

Step 6: 

Then substitute these values in regression equation formula Regression Equation(y) = a + bx = 

-8.098 + 0.19x. Suppose if we want to know the approximate y value for the variable x = 64. 

Then we can substitute the value in the above equation. Regression Equation(y) = a + bx = -

8.098 + 0.19(64). = -8.098 + 12.16 = 4.06 This example will guide you to find the relationship 

between two variables by calculating the Regression from the above steps. 

UNIT IV 

A parameter is a characteristic of apopulation. A statistic is a 

characteristic of asample. Inferential statistics enables you to make an 

educated guess about a population parameter based on 

a statistic computed from a sample randomly drawn from 

that population 

Tests of Significance 

Once sample data has been gathered through an observational study or 

experiment, statistical inference allows analysts to assess evidence in favor or 



some claim about the population from which the sample has been drawn. The 

methods of inference used to support or reject claims based on sample data are 

known as tests of significance. 

Every test of significance begins with a null hypothesis H0. H0 represents a 

theory that has been put forward, either because it is believed to be true or 

because it is to be used as a basis for argument, but has not been proved. For 

example, in a clinical trial of a new drug, the null hypothesis might be that the 

new drug is no better, on average, than the current drug. We would write H0: 

there is no difference between the two drugs on average. 

The alternative hypothesis, Ha, is a statement of what a statistical hypothesis 

test is set up to establish. For example, in a clinical trial of a new drug, the 

alternative hypothesis might be that the new drug has a different effect, on 

average, compared to that of the current drug. We would write Ha: the two 

drugs have different effects, on average. The alternative hypothesis might also 

be that the new drug is better, on average, than the current drug. In this case we 

would write Ha: the new drug is better than the current drug, on average. 

The final conclusion once the test has been carried out is always given in terms 

of the null hypothesis. We either "reject H0 in favor of Ha" or "do not 

reject H0"; we never conclude "reject Ha", or even "accept Ha". 

If we conclude "do not reject H0", this does not necessarily mean that the null 

hypothesis is true, it only suggests that there is not sufficient evidence 

against H0 in favor of Ha; rejecting the null hypothesis then, suggests that the 

alternative hypothesis may be true. 

Hypotheses are always stated in terms of population parameter, such as the 

mean . An alternative hypothesis may be one-sided or two-sided. A one-

sided hypothesis claims that a parameter is either larger or smaller than the 

value given by the null hypothesis. A two-sided hypothesis claims that a 

parameter is simply not equal to the value given by the null hypothesis -- the 

direction does not matter. 

Hypotheses for a one-sided test for a population mean take the following form:  

H0:  = k  

Ha:  > k  

or  



H0:  = k  

Ha:  < k. 

Hypotheses for a two-sided test for a population mean take the following form:  

H0:  = k  

Ha:   k. 

A confidence interval gives an estimated range of values which is likely to 

include an unknown population parameter, the estimated range being calculated 

from a given set of sample data. 

Example 

Suppose a test has been given to all high school students in a certain state. The 

mean test score for the entire state is 70, with standard deviation equal to 10. 

Members of the school board suspect that female students have a higher mean 

score on the test than male students, because the mean score  from a 

random sample of 64 female students is equal to 73. Does this provide strong 

evidence that the overall mean for female students is higher? 

The null hypothesis H0 claims that there is no difference between the mean 

score for female students and the mean for the entire population, so that  = 

70. The alternative hypothesis claims that the mean for female students is 

higher than the entire student population mean, so that  > 70. 

Significance Levels 

The significance level  for a given hypothesis test is a value for which a P-

value less than or equal to  is considered statistically significant. Typical 

values for  are 0.1, 0.05, and 0.01. These values correspond to the probability 

of observing such an extreme value by chance. In the test score example above, 

the P-valueis 0.0082, so the probability of observing such a value by chance is 

less that 0.01, and the result is significant at the 0.01 level. 

In a one-sided test,  corresponds to the critical value z* such that P(Z > z*) 

= . For example, if the desired significance level for a result is 0.05, the 

corresponding value for z must be greater than or equal to z* = 1.645 (or less 

than or equal to -1.645 for a one-sided alternative claiming that the mean is less 



than the null hypothesis). For a two-sided test, we are interested in the 

probability that 2P(Z > z*) = , so the critical value z* corresponds to the /2 

significance level. To achieve a significance level of 0.05 for a two-sided test, 

the absolute value of the test statistic (|z|) must be greater than or equal to the 

critical value 1.96 (which corresponds to the level 0.025 for a one-sided test). 

Another interpretation of the significance level , based in decision theory, is 

that  corresponds to the value for which one chooses to reject or accept the 

null hypothesis H0. In the above example, the value 0.0082 would result in 

rejection of the null hypothesis at the 0.01 level. The probability that this is a 

mistake -- that, in fact, the null hypothesis is true given the z-statistic -- is less 

than 0.01. In decision theory, this is known as a Type I error. The probability 

of a Type I error is equal to the significance level , and the probability of 

rejecting the null hypothesis when it is in fact false (a correct decision) is equal 

to 1 - . To minimize the probability of Type I error, the significance level is 

generally chosen to be small. 

Example 

Of all of the individuals who develop a certain rash, suppose the mean recovery 

time for individuals who do not use any form of treatment is 30 days with 

standard deviation equal to 8. A pharmaceutical company manufacturing a 

certain cream wishes to determine whether the cream shortens, extends, or has 

no effect on the recovery time. The company chooses a random sample of 100 

individuals who have used the cream, and determines that the mean recovery 

time for these individuals was 28.5 days. Does the cream have any effect? 

Since the pharmaceutical company is interested in any difference from the 

mean recovery time for all individuals, the alternative hypothesis Ha is two-

sided:  30. The test statistic is calculated to be z = (28.5 - 

30)/(8/sqrt(100)) = -1.5/0.8 = -1.875. The P-value for this statistic 

is 2P(Z > 1.875) = 2(1 - P((Z < 1.875) = 2(1- 0.9693) = 2(0.0307) = 0.0614. 

This is not significant at the 0.05 level, although it is significant at the 0.1 level. 

 
Decision theory is also concerned with a second error possible in significance 

testing, known as Type II error. Contrary to Type I error, Type II error is the 

error made when the null hypothesis is incorrectly accepted. The probability of 

correctly rejecting the null hypothesis when it is false, the complement of the 

Type II error, is known as the power of a test. Formally defined, the power of 



a test is the probability that a fixed level  significance test will reject the 

null hypothesis H0 when a particular alternative value of the parameter is 

true. 

 

Hypothesis Testing Examples (One Sample Z 

Test) 
The one sample z test isn’t used very often (because we rarely know the actual population standard 

deviation). However, it’s a good idea to understand how it works as it’s one of the simplest tests 

you can perform in hypothesis testing. In English class you got to learn the basics (like grammar 

and spelling) before you could write a story; think of one sample z tests as the foundation for 

understanding more complex hypothesis testing. This page contains two hypothesis testing 

examples for one sample z-tests. 

A principal at a certain school claims that the students in his school are above average 

intelligence. A random sample of thirty students IQ scores have a mean score of 112. Is there 

sufficient evidence to support the principal’s claim? The mean population IQ is 100 with a standard 

deviation of 15. 

Step 1: State the Null hypothesis. The accepted fact is that the population mean is 100, so: H0: 

μ=100. 

Step 2: State the Alternate Hypothesis. The claim is that the students have above average IQ 

scores, so: 

H1: μ > 100. 

The fact that we are looking for scores “greater than” a certain point means that this is a one-

tailed test. 

Step 3: Draw a picture to help you visualize the problem. 

 

 

 

Step 4: State the alpha level. If you aren’t given an alpha level, use 5% (0.05). 

Step 5: Find the rejection region area (given by your alpha level above) from the z-table. An area of 

.05 is equal to a z-scoreof 1.645. 

http://www.statisticshowto.com/one-sample-z-test/
http://www.statisticshowto.com/what-is-standard-deviation/
http://www.statisticshowto.com/what-is-standard-deviation/
http://www.statisticshowto.com/one-sample-z-test/
http://www.statisticshowto.com/sample/
http://www.statisticshowto.com/mean
http://www.statisticshowto.com/what-is-standard-deviation/
http://www.statisticshowto.com/what-is-standard-deviation/
http://www.statisticshowto.com/what-is-the-null-hypothesis/
http://www.statisticshowto.com/population-mean/
http://www.statisticshowto.com/what-is-an-alternate-hypothesis/
http://www.statisticshowto.com/wp-content/uploads/2014/10/hypothesis-testing-example.jpg
http://www.statisticshowto.com/what-is-an-alpha-level/
http://www.statisticshowto.com/what-is-an-alpha-level/
http://www.statisticshowto.com/rejection-region/
http://www.statisticshowto.com/tables/z-table/
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Step 6: Find the test statistic using this formula:  

For this set of data: z= (112.5-100) / (15/√30)=4.56. 

Step 6: If Step 6 is greater than Step 4, reject the null hypothesis. If it’s less than Step 4, you 

cannot reject the null hypothesis. In this case, it is greater, so you can reject the null. 

 

Hypothesis Testing of the 

Difference Between Two Population 

Means 

 

This file is part of a program based on the Bio 4835 Biostatistics class taught 

at Kean University in Union, New Jersey.  The course uses the following text: 

Daniel, W. W. 1999.  Biostatistics: a foundation for analysis in the health sciences.  New York: John Wiley 

and Sons.   

The file follows this text very closely and readers are encouraged to consult the text for further information. 

 

B)  Hypothesis testing of the difference between two population means 

 

This is a two sample z test which is used to determine if two population means 

are equal or unequal.  There are three possibilities for formulating hypotheses. 

 

l.        :  =           :       

 

2.       :               :  <   

 

3.       :               :  >   

 

 Procedure 

 

The same procedure is used in three different situations 

 Sampling is from normally distributed populations with known variances 

                 

     

http://www.statisticshowto.com/test-statistic/
http://www.statisticshowto.com/wp-content/uploads/2014/02/z-score-formula.jpg


 Sampling from normally distributed populations where population variances are 

unknown 

o population variances equal 

                             

                     This is with t distributed as Student's t distribution with (  + -

2) degrees of freedom and a pooled variance. 
o population variances unequal 

When population variances are unequal, a distribution of t' is used in a manner 

similar to calculations of confidence intervals in similar circumstances. 

 Sampling from populations that are not normally distributed 

 

If both sample sizes are 30 or larger the central limit theorem is in effect.  The 

test statistic is  

 

                                  

If the population variances are unknown, the sample variances are used. 

 

 

Sampling from normally distributed populations with population 

variances known 
 

Example 7.3.1 

 

Serum uric acid levels 

 

Is there a difference between the means between individuals with Down's 

syndrome and normal individuals? 

 

(1) Data 

 

         = 4.5    = 12    = 1 

          = 3.4    = 15    = 1.5 

          = .05 

 

(2) Assumptions 



     two independent random samples 

     each drawn from a normally distributed population 

 

(3) Hypotheses 

 

         :   =   

         :        

  

(4) Test statistic 

 

This is a two sample z test. 

 

        (a) Distribution of test statistic 

 

If the assumptions are correct and  is true, the test statistic is distributed as 

the normal distribution. 

     

        (b)  Decision rule 

 

With  = .05, the critical values of z are -1.96 and +1.96.  We reject  if z < -

1.96 or z > +1.96. 

 

 (5) Calculation of test statistic 

 

         

  

 (6) Statistical decision 

 

Reject  because 2.57 > 1.96. 

 

(7) Conclusion 

 

From these data, it can be concluded that the population means are not equal.  

A 95% confidence interval would give the same conclusion. 

 

        p = .0102. 



 

 

Sampling from normally distributed populations with unknown variances 

 

With equal population variances, we can obtain a pooled value from the sample 

variances. 

 

Example 7.3.2 

 

Lung destructive index 

 

We wish to know if we may conclude, at the 95% confidence level, that 

smokers, in general, have greater lung damage than do non-smokers. 

 

(1) Data 

 

Smokers:            = 17.5    = 16    = 4.4752 

Non-Smokers:    = 12.4    =   9    = 4.8492 

                            = .05 

 

Calculation of Pooled Variance: 

 

         

  

(2) Assumptions 

     independent random samples 

     normal distribution of the populations 

     population variances are equal 

 

(3) Hypotheses 

 

         :      



         :   >   

 

(4) Test statistic 

 

         

        (a) Distribution of test statistic 

 

If the assumptions are met and  is true, the test statistic is distributed as 

Student's t distribution with 23 degrees of freedom. 

 

        (b) Decision rule 

 

With  = .05 and df = 23, the critical value of t is 1.7139.  We reject  if t > 

1.7139. 

 

(5) Calculation of test statistic 

 

         

  

(6) Statistical decision 

 

Reject  because 2.6563 > 1.7139. 

 

(7) Conclusion 

 

On the basis of the data, we conclude that > . 

 

Actual values 

    t = 2.6558 

    p = .014 

 

Sampling from populations that are not normally distributed 

 



Example 7.3.4 

 

These data were obtained in a study comparing persons with disabilities with 

persons without disabilities.  A scale known as the Barriers to Health 

Promotion Activities for Disabled Persons (BHADP) Scale gave the data.  We 

wish to know if we may conclude, at the 99% confidence level, that persons 

with disabilities score higher than persons without disabilities. 

 

(1) Data 

 

Disabled:             = 31.83    = 132    = 7.93 

Nondisabled:      = 25.07    = 137    = 4.80 

                           = .01 

 

 

(2) Assumptions 
     independent random samples 

 

(3) Hypotheses 

 

         :        

         :   >   

 

(4) Test statistic 

 

Because of the large samples, the central limit theorem permits calculation of 

the z score as opposed to using t.  The z score is calculated using the given 

sample standard deviations. 

 

        (a) Distribution of test statistic 

 

If the assumptions are correct and  is true, the test statistic is approximately 

normally distributed  

 

        (b) Decision rule 

 

With  = .01 and a one tail test, the critical value of z is 2.33.  We reject  z > 

2.33. 

 



 

(5) Calculation of test statistic 

 

          

 

(6) Statistical decision 

 

Reject  because 8.42 > 2.33. 

 

(7) Conclusion 

 

On the basis of these data, the average persons with disabilities score higher on 

the BHADP test than do the nondisabled persons. 

 

Actual values 

    z = 8.42 

    p = 1.91 x 10-17 

 

Paired comparisons 
 

Sometimes data comes from nonindependent samples.  An example might be 

testing "before and after" of cosmetics or consumer products.  We could use a 

single random sample and do "before and after" tests on each person.  A 

hypothesis test based on these data would be called a paired comparisons test.  

Since the observations come in pairs, we can study the difference, d, between 

the samples.  The difference between each pair of measurements is called di. 

 

Test statistic 

 

With a population of n pairs of measurements, forming a simple random 

sample from a normally distributed population, the mean of the difference,  , 

is tested using the following implementation of t. 

 



         

  

  

Paired comparisons 

 

Example 7.4.1 

 

Very-low-calorie diet (VLCD) Treatment 

 

Table gives B (before) and A (after) treatment data for obese female patients in 

a weight-loss program. 

 

    

    

 

 

We calculate di = A-B for each pair of data resulting in negative values 

meaning that the participants lost weight. 

 

We wish to know if we may conclude, at the 95% confidence level, that the 

treatment is effective in causing weight reduction in these people. 

 

(1)  Data 

 

Values of di are calculated by subtracting each A from each B to give a 

negative number.  On the TI-83 calculator place the A data in L1 and the B data 

in L2.  Then make L3 = L1 - L2 and the calculator does each calculation 

automatically.   



 

In  Microsoft Excel put the A data in column A and the B data in column B, 

without using column headings so that the first pair of data are on line 1.  In 

cell C1, enter the following formula:  =a1-b1.  This calculates the 

difference, di, for B - A.  Then copy the formula down column C until the rest 

of the differences are calculated. 

 

 n = 9 

 = .05 

 

(2) Assumptions 
 the observed differences are a simple random sample from a normally distributed 

population of differences 

 

(3) Hypotheses 

 

        :   0 

        :   < 0 (meaning that the patients lost weight) 

 

(4) Test statistic 

 

The test statistic is t which is calculated as  

 

         

              

        (a) Distribution of test statistic 

 

The test statistic is distributed as Student's t with 8 degrees of freedom 

 

        (b) Decision rule 

 

With  = .05 and 8 df the critical value of t is -1.8595.  We reject  if t < -

1.8595. 

 

 (5) Calculation of test statistic 

 



         

  

(6) Statistical decision 

 

Reject  because -12.7395 < -1.8595 

p = 6.79 x 10-7 

 

(7) Conclusion 

 

On the basis of these data, we conclude that the diet program is effective. 

 

UNIT V 

 

 

 The Chi Square Statistic 

Types of Data: 

There are basically two types of random variables and they yield two types of 

data: numerical and categorical. A chi square (X2) statistic is used to investigate 

whether distributions of categorical variables differ from one another. Basically 

categorical variable yield data in the categories and numerical variables yield 

data in numerical form. Responses to such questions as "What is your major?" 

or Do you own a car?" are categorical because they yield data such as "biology" 

or "no." In contrast, responses to such questions as "How tall are you?" or 

"What is your G.P.A.?" are numerical. Numerical data can be either discrete or 

continuous. The table below may help you see the differences between these 

two variables. 

 Data Type  Question Type 
Possible 

Responses 

 Categorical  What is your sex? male or female 

 Numerical 
Disrete- How many cars do you 

own? 
two or three 



 Numerical Continuous - How tall are you?  72 inches 

Notice that discrete data arise fom a counting process, while continuous data 

arise from a measuring process. 

The Chi Square statistic compares the tallies or counts of categorical responses 

between two (or more) independent groups. (note: Chi square tests can only be 

used on actual numbers and not on percentages, proportions, means, etc.) 

2 x 2 Contingency Table 

There are several types of chi square tests depending on the way the data was 

collected and the hypothesis being tested. We'll begin with the simplest case: a 

2 x 2 contingency table. If we set the 2 x 2 table to the general notation shown 

below in Table 1, using the letters a, b, c, and d to denote the contents of the 

cells, then we would have the following table: 

Table 1. General notation for a 2 x 2 contingency table. 

Variable 1 

 Variable 2  Data type 1  Data type 2  Totals 

 Category 1  a b a + b 

 Category 2  c d c + d 

 Total a + c b + d a + b + c + d = N 

For a 2 x 2 contingency table the Chi Square statistic is calculated by the 

formula: 

 

Note: notice that the four components of the denominator are the four totals 

from the table columns and rows. 

Suppose you conducted a drug trial on a group of animals and you 

hypothesized that the animals receiving the drug would show increased heart 

rates compared to those that did not receive the drug. You conduct the study 

and collect the following data: 

Ho: The proportion of animals whose heart rate increased is independent of 

drug treatment. 



Ha: The proportion of animals whose heart rate increased is associated with 

drug treatment. 

  

Table 2. Hypothetical drug trial results. 

  
 Heart Rate 

 Increased 

 No Heart Rate 

 Increase 
Total 

 Treated  36  14  50 

 Not treated  30  25  55 

 Total  66  39  105 

Applying the formula above we get: 

Chi square = 105[(36)(25) - (14)(30)]2 / (50)(55)(39)(66) = 3.418 

Before we can proceed we eed to know how many degrees of freedom we have. 

When a comparison is made between one sample and another, a simple rule is 

that the degrees of freedom equal (number of columns minus one) x (number of 

rows minus one) not counting the totals for rows or columns. For our data this 

gives (2-1) x (2-1) = 1. 

We now have our chi square statistic (x2 = 3.418), our predetermined alpha 

level of significance (0.05), and our degrees of freedom (df = 1). Entering the 

Chi square distribution table with 1 degree of freedom and reading along the 

row we find our value of x2 (3.418) lies between 2.706 and 3.841. The 

corresponding probability is between the 0.10 and 0.05 probability levels. That 

means that the p-value is above 0.05 (it is actually 0.065). Since a p-value of 

0.65 is greater than the conventionally accepted significance level of 0.05 (i.e. 

p > 0.05) we fail to reject the null hypothesis. In other words, there is no 

statistically significant difference in the proportion of animals whose heart rate 

increased. 

What would happen if the number of control animals whose heart rate 

increased dropped to 29 instead of 30 and, consequently, the number of 

controls whose hear rate did not increase changed from 25 to 26? Try it. Notice 

that the new x2 value is 4.125 and this value exceeds the table value of 3.841 (at 

1 degree of freedom and an alpha level of 0.05). This means that p < 0.05 (it is 

now0.04) and we reject the null hypothesis in favor of the alternative 

hypothesis - the heart rate of animals is different between the treatment groups. 

When p < 0.05 we generally refer to this as a significant difference. 



Table 3. Chi Square distribution table. 

probability level (alpha) 

Df 0.5 0.10 0.05 0.02 0.01 0.001 

1 0.455 2.706 3.841 5.412 6.635 10.827 

2 1.386 4.605 5.991 7.824 9.210 13.815 

3 2.366 6.251 7.815 9.837 11.345 16.268 

4 3.357 7.779 9.488 11.668 13.277 18.465 

5 4.351 9.236 11.070 13.388 15.086 20.517 

To make the chi square calculations a bit easier, plug your observed and 

expected values into the following applet. Click on the cell and then enter the 

value. Click the compute button on the lower right corner to see the chi square 

value printed in the lower left hand coner. 

 
 

 
 

 

  

Chi Square Goodness of Fit (One Sample Test) 

This test allows us to compae a collection of categorical data with some 

theoretical expected distribution. This test is often used in genetics to compare 

the results of a cross with the theoretical distribution based on genetic theory. 

Suppose you preformed a simpe monohybrid cross between two individuals 

that were heterozygous for the trait of interest. 

Aa x Aa 

The results of your cross are shown in Table 4. 

  

Table 4. Results of a monohybrid coss between two heterozygotes for the 'a' 

gene. 



   A  a  Totals 

 A  10  42  52 

 a  33  15  48 

 Totals  43  57  100 

The penotypic ratio 85 of the A type and 15 of the a-type (homozygous 

recessive). In a monohybrid cross between two heterozygotes, however, we 

would have predicted a 3:1 ratio of phenotypes. In other words, we would have 

expected to get 75 A-type and 25 a-type. Are or resuls different? 

 

Calculate the chi square statistic x2 by completing the following steps: 

1. For each observed number in the table subtract the 

corresponding expected number (O — E). 

2. Square the difference [ (O —E)2 ]. 

3. Divide the squares obtained for each cell in the table by 

the expected number for that cell [ (O - E)2 / E ]. 

4. Sum all the values for (O - E)2 / E. This is the chi square statistic. 

For our example, the calculation would be: 

  Observed Expected (O — 
E) 

(O — E)2 (O — E)2/ E 

A-
type 

85 75 10 100 1.33 

a-
type 

15 25 10 100 4.0 

Total 100 100      5.33 

x2 = 5.33 

We now have our chi square statistic (x2 = 5.33), our predetermined alpha level 

of significalnce (0.05), and our degrees of freedom (df =1). Entering the Chi 

square distribution table with 1 degree of freedom and reading along the row 

we find our value of x2 5.33) lies between 3.841 and 5.412. The corresponding 

probability is 0.05<P<0.02. This is smaller than the conventionally accepted 

significance level of 0.05 or 5%, so the null hypothesis that the two 



distributions are the same is rejected. In other words, when the computed 

x2 statistic exceeds the critical value in the table for a 0.05 probability level, 

then we can reject the null hypothesis of equal distributions. Since our 

x2 statistic (5.33) exceeded the critical value for 0.05 probability level (3.841) 

we can reject the null hypothesis that the observed values of our cross are the 

same as the theoretical distribution of a 3:1 ratio. 

Table 3. Chi Square distribution table. 

probability level (alpha) 

Df 0.5 0.10 0.05 0.02 0.01 0.001 

1 0.455 2.706 3.841 5.412 6.635 10.827 

2 1.386 4.605 5.991 7.824 9.210 13.815 

3 2.366 6.251 7.815 9.837 11.345 16.268 

4 3.357 7.779 9.488 11.668 13.277 18.465 

5 4.351 9.236 11.070 13.388 15.086 20.517 

To put this into context, it means that we do not have a 3:1 ratio of A_ to aa 

offspring. 

To make the chi square calculations a bit easier, plug your observed and 

expected values into the following java applet. 

Click on the cell and then enter the value. Click the compute button on the 

lower right corner to see the chi square value printed in the lower left hand 

coner. 

 
 

 
 

 

  

Chi Square Test of Independence 

For a contingency table that has r rows and c columns, the chi square test can 

be thought of as a test of independence. In a test ofindependence the null and 

alternative hypotheses are: 



Ho: The two categorical variables are independent. 

Ha: The two categorical variables are related. 

We can use the equation Chi Square = the sum of all the(fo - fe)2 / fe 

Here fo denotes the frequency of the observed data and fe is the frequency of the 

expected values. The general table would look something like the one below: 

  
 Category 

I 

Category 

II 

Category 

III 
Row Totals 

 Sample A  a b c a+b+c 

 Sample B  d e f d+e+f 

 Sample C  g h i g+h+i 

 Column 

Totals 
 a+d+g b+e+h c+f+i  a+b+c+d+e+f+g+h+i=N 

Now we need to calculate the expected values for each cell in the table and we 

can do that using the the row total times the column total divided by the grand 

total (N). For example, for cell a the expected value would be 

(a+b+c)(a+d+g)/N. 

Once the expected values have been calculated for each cell, we can use the 

same procedure are before for a simple 2 x 2 table. 

 Observed Expected 
|O - 

E| 
(O — E)2  (O — E)2/ E 

          

Suppose you have the following categorical data set. 

Table . Incidence of three types of malaria in three tropical regions. 

   Asia Africa 
South 

America 
Totals 

 Malaria 

A 
31 14 45 90 

 Malaria 

B 
2 5 53 60 

 Malaria 

C 
53 45 2 100 

 Totals  86 64 100 250 



  

We could now set up the following table: 

 Observed Expected |O -E|  (O — E)2  (O — E)2/ E 

 31  30.96  0.04  0.0016  0.0000516 

 14  23.04  9.04 81.72 3.546 

 45  36.00  9.00 81.00 2.25 

 2  20.64  18.64 347.45 16.83 

 5  15.36  10.36 107.33 6.99 

 53  24.00  29.00 841.00 35.04 

 53  34.40  18.60 345.96 10.06 

 45  25.60  19.40 376.36 14.70 

 2  40.00  38.00  1444.00 36.10 

Chi Square = 125.516 

Degrees of Freedom = (c - 1)(r - 1) = 2(2) = 4 

Table 3. Chi Square distribution table. 

probability level (alpha) 

Df 0.5 0.10 0.05 0.02 0.01 0.001 

1 0.455 2.706 3.841 5.412 6.635 10.827 

2 1.386 4.605 5.991 7.824 9.210 13.815 

3 2.366 6.251 7.815 9.837 11.345 16.268 

4 3.357 7.779 9.488 11.668 13.277 18.465 

5 4.351 9.236 11.070 13.388 15.086 20.517 

Reject Ho because 125.516 is greater than 9.488 (for alpha  

Thus, we would reject the null hypothesis that there is no relationship between 

location and type of malaria. Our data tell us there is a relationship between 

type of malaria and location, but that's all it says. 



One-Way Analysis of Variance (ANOVA) Example Problem 
 
Introduction 
Analysis of Variance (ANOVA) is a hypothesis-testing technique used to test the equality of two 
or more population (or treatment) means by examining the variances of samples that are taken. 
ANOVA allows one to determine whether the differences between the samples are simply due to 
random error (sampling errors) or whether there are systematic treatment effects that causes the 
mean in one group to differ from the mean in another. 
 
Most of the time ANOVA is used to compare the equality of three or more means, however 
when the means from two samples are compared using ANOVA it is equivalent to using a t-test 
to compare the means of independent samples. 
 
ANOVA is based on comparing the variance (or variation) between the data samples to variation 
within each particular sample. If the between variation is much larger than the within variation, 
the means of different samples will not be equal. If the between and within variations are 
approximately the same size, then there will be no significant difference between sample means. 
 
Assumptions of ANOVA:  
(i)  All populations involved follow a normal distribution.  
(ii)  All populations have the same variance (or standard deviation).  
(iii)  The samples are randomly selected and independent of one another. 
 
Since ANOVA assumes the populations involved follow a normal distribution, ANOVA falls 
into a category of hypothesis tests known as parametric tests. If the populations involved did not 
follow a normal distribution, an ANOVA test could not be used to examine the equality of the 
sample means. Instead, one would have to use a non-parametric test (or distribution-free test), 
which is a more general form of hypothesis testing that does not rely on distributional 
assumptions.  
 
Example 
Consider this example: 
Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of 
compact cars, midsize cars, and full-size cars. It collects a sample of three for each of the 
treatments (cars types). Using the hypothetical data provided below, test whether the mean 
pressure applied to the driver’s head during a crash test is equal for each types of car. Use α = 
5%. 
   
Table ANOVA.1 
 Compact cars Midsize cars Full-size cars 

 643 469 484 
 655 427 456 
 702 525 402 

 X  666.67 473.67 447.33 
S 31.18 49.17 41.68 



 
 
(1.)  State the null and alternative hypotheses 
The null hypothesis for an ANOVA always assumes the population means are equal. Hence, we 
may write the null hypothesis as:  

H0: 321 µµµ ==  - The mean head pressure is statistically equal across the three types of cars. 
 
Since the null hypothesis assumes all the means are equal, we could reject the null hypothesis if 
only mean is not equal. Thus, the alternative hypothesis is:   
Ha: At least one mean pressure is not statistically equal.  
 
 
(2.)  Calculate the appropriate test statistic 
The test statistic in ANOVA is the ratio of the between and within variation in the data. It follows 
an F distribution.  
 
Total Sum of Squares – the total variation in the data. It is the sum of the between and within 
variation.  
 

Total Sum of Squares (SST) = ∑∑
= =

−
r

i

c

j
ij XX

1 1

2)( , where r is the number of rows in the table, c is 

the number of columns, X  is the grand mean, and ijX  is the i th observation in the j th column. 
 
Using the data in Table ANOVA.1 we may find the grand mean: 

22.529
9

)402456484525427469702655643(
=

++++++++
== ∑

N
X

X ij    

 
SST = 

55.96303)22.529402(...)22.529469()22.529702()22.529655()22.529643( 22222 =−++−+−+−+−
  
 
 
Between Sum of Squares (or Treatment Sum of Squares) – variation in the data between the 
different samples (or treatments).  
 
Treatment Sum of Squares (SSTR) = ∑ − 2)( XXr jj , where jr  is the number of rows in the 
j th treatment and jX  is the mean of the j th treatment. 

 
Using the data in Table ANOVA.1,  

SSTR = 55.86049])22.52933.447(3[])22.52967.473(3[])22.52967.666(3[ 222 =−∗+−∗+−∗   
 



Within variation (or Error Sum of Squares) – variation in the data from each individual 
treatment. 
 
Error Sum of Squares (SSE) = ∑∑ − 2)( jij XX  
 
From Table ANOVA.1,  

SSE= +−+−+− ])67.666702()67.666655()67.666643[( 222
 

])67.473525()67.473427()67.473469[( 222 −+−+− + 
])33.447402()33.447456()33.447484[( 222 −+−+−  = 10254. 

 
Note that SST = SSTR + SSE (96303.55 = 86049.55 + 10254).  
 
Hence, you only need to compute any two of three sources of variation to conduct an ANOVA. 
Especially for the first few problems you work out, you should calculate all three for practice.  
 
 
The next step in an ANOVA is to compute the “average” sources of variation in the data using 
SST, SSTR, and SSE. 
 

Total Mean Squares (MST) 
1−

=
N
SST     “average total variation in the data” (N is the total 

number of observations) 
 

MST = 
94.12037

)19(
55.96303

=
−  

 

Mean Square Treatment (MSTR) = 
1−c

SSTR     “average between variation” (c is the number of 

columns in the data table) 
 

MSTR = 
78.43024

)13(
55.86049

=
−  

 

Mean Square Error (MSE) = 
cN

SSE
−

    “average within variation” 

 

MSE = 
1709

)39(
10254

=
−  

 
Note: MST ≠  MSTR + MSE 
 



The test statistic may now be calculated. For a one-way ANOVA the test statistic is equal to the 
ratio of MSTR and MSE. This is the ratio of the “average between variation” to the “average 
within variation.” In addition, this ratio is known to follow an F distribution. Hence, 
 

F = 
17.25

1709
78.43024

==
MSE

MSTR
.  The intuition here is relatively straightforward. If the average 

between variation rises relative to the average within variation, the F statistic will rise and so will 
our chance of rejecting the null hypothesis. 
 
 
(3.)  Obtain the Critical Value 
To find the critical value from an F distribution you must know the numerator (MSTR) and 
denominator (MSE) degrees of freedom, along with the significance level. 
 
FCV has df1 and df2 degrees of freedom, where df1 is the numerator degrees of freedom equal to 
c-1 and df2 is the denominator degrees of freedom equal to N-c. 
 
In our example, df1 = 3 - 1 = 2 and df2 = 9 - 3 = 6. Hence we need to find CVF 6,2 corresponding to 

α = 5%. Using the F tables in your text we determine that CVF 6,2 =  5.14. 
 
 
(4.)  Decision Rule 
You reject the null hypothesis if:  F (observed value) > FCV (critical value). In our example 25.17 
> 5.14, so we reject the null hypothesis. 
 
 
(5.)  Interpretation 
Since we rejected the null hypothesis, we are 95% confident (1-α ) that the mean head pressure 
is not statistically equal for compact, midsize, and full size cars. However, since only one mean 
must be different to reject the null, we do not yet know which mean(s) is/are different. In short, 
an ANOVA test will test us that at least one mean is different, but an additional test must be 
conducted to determine which mean(s) is/are different.  
 
 
Determining Which Mean(s) Is/Are Different 
If you fail to reject the null hypothesis in an ANOVA then you are done. You know, with some 
level of confidence, that the treatment means are statistically equal. However, if you reject the 
null then you must conduct a separate test to determine which mean(s) is/are different. 
 
There are several techniques for testing the differences between means, but the most common 
test is the Least Significant Difference Test.  
 



Least Significant Difference (LSD) for a balanced sample:  
r

FMSE cN−∗∗ ,12
 , where MSE is 

the mean square error and r is the number of rows in each treatment. 
 

In the example above, LSD = 
3

)99.5)(1709)(2(  = 82.61 

Thus, if the absolute value of the difference between any two treatment means is greater than 
82.61, we may conclude that they are not statistically equal. 
 
Compact cars vs. Midsize cars: 

67.47367.666 −  = 193. Since 193 > 82.61  mean head pressure is statistically different 
between compact and midsize cars. 
 
Midsize cars vs. Full-size cars: 

33.44767.473 −  = 26.34. Since 26.34 < 82.61  mean head pressure is statistically equal 
between midsize and full-size cars. 
 
Compact vs. Full-size: 
Work this on your own. 
 
 
One-way ANOVA in Excel 
You may conduct a one-way ANOVA using Excel.  
 
(Preliminary step)  First, make sure that the “Analysis ToolPak” is installed. 
 Under “Tools” is the option “Data Analysis” present?  

If yes – ToolPak is installed.  
If no – select “Add-ins.” 

Check the boxes entitled “Analysis ToolPak” and “Analysis ToolPak – VBA” and 
click “OK”. This will install the “Data Analysis ToolPak.” 

 
(1.)  Under “Tools” select “Data Analysis” 
 In the window that appears select “ANOVA: One factor” and click “OK.” 
(2.)  Using your mouse highlight the cells containing the data. 
(3.)  Select “Columns” if each treatment is its own column or “Row” if each treatment is its own 
row. 
(4.)  Set your level of significance. (The default is 5% or 0.05.) 
(5.)  Click “OK” and the ANOVA output will appear on a new worksheet. 
 
 
ANOVA Results from Excel: 
SUMMARY       

Groups Count Sum Average Variance   
Column 1 3 2000 666.6667 972.3333   



Column 2 3 1421 473.6667 2417.333   
Column 3 3 1342 447.3333 1737.333   
       
ANOVA       
Source of Variation SS df MS F P-value F crit 

Between Groups 86049.55556 2 43024.78 25.17541 0.001207 5.143249
Within Groups 10254 6 1709    
       
Total 96303.55556 8         
 
 
The results under the heading “SUMMARY” simply provides you with summary statistics for 
each of your samples. The results of the ANOVA test are provided under the heading 
“ANOVA.” Comparing these figures with the example above, it should be simple to determine 
the meaning of the Excel output. 



 Two-Way Analysis of Variance 
 
Note: Much of the math here is tedious but straightforward.  We’ll skim over it in class but you 
should be sure to ask questions if you don’t understand it. 
 
I. OVERVIEW. 
 

A. Sometimes a researcher might want to simultaneously examine the effects 
of two treatments (where both treatments have nominal-level measurement).   

 
EXAMPLES: 
 
T the effect of sex and race on wages 
T the effects of the level of pollution and the level of city services on housing prices 
T the effects of religion and region on income 
 
To elaborate: with sex and race, we might wonder if 
T are there differences because of sex alone 
T are there differences because of race alone 
T are there differences attributable to particular combinations of sex and race - that is, 

are there interaction effects?  For example, white males, white females, and black males may all 
have similar wages, but black females could have much lower wages.  We’ll discuss interaction 
effects more shortly. 
 

B. Two-Way Anova with a Balanced Design and the Classic Experimental 
Approach. We can use Analysis of Variance techniques for these and more complicated 
problems.  These techniques can get fairly involved and employ several different options, each 
of which has various strengths and weaknesses.  If this were a psychology class, we might spend 
a lot more time going over ANOVA, where such techniques are more widely used.  But, in 
Sociology, we are much more likely to use regression and other techniques for our advanced 
work.  Therefore, for our purposes, I will primarily focus on the special case of balanced designs 
(this is also what Hays, Harnett and other texts focus on).  In a balanced design, all cell 
frequencies are equal, i.e. the number of observations in each combination of treatments is the 
same.  So, for example, there would be 5 white males, 5 black males, 5 white females, and 5 
black females.  Balanced designs are unlikely in survey research but they are quite common (and 
often encouraged) in experimental studies.  Equal cell frequencies make it easier to disentangle 
the effects of the row and column variables (e.g. sex and race) and also minimizes the effect of 
non-homogenous population variances if they exist. 

In addition, I’ll note that several programs give you various options for the 
“Method” to use for Anova.  If the design is balanced, I don’t think it matters what method you 
use.  But, if you choose what SPSS calls the Classic Experimental Approach, many of the 
formulas that follow will be valid even when the design is not balanced.  The Regression 
Approach and the Hierarchical Approach are other options (and several other options, with 
varying names, are also listed in different procedures). The SPSS manual and other sources have 
more information if you find yourself needing to know about these. 
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As noted below, these assumptions are not required for everything we will be 
talking about.  These assumptions will affect how computations are done with the raw data but, 
once that is done, the hypothesis testing procedures will be largely the same.  Ergo, the most 
critical parts of our discussion will apply even when designs are not balanced. 
 

C. The model.  When we have 2 treatments, the model can be written as 
 

ετλλτµ ijkjkkjijk  + )( +  +  +  = y  
 
where µ = the grand mean, τj is the treatment effect for the jth category of the row variable, λk is 
the treatment effect for the kth category of the column variable, (τλ)jk is the interaction effect for 
the combination of the jth row category and the kth column category. 

EXAMPLE:  Suppose the overall average income is $20,000, the average black income is 
$15,000, the average female income is $17,000, and the average black woman’s income is 
$10,000.  This means that µ = $20,000, τB = -$5,000, λW = -$3,000, (τλ)BW = -$2,000. 
 

D. As before, we want to partition the variance.  Note that 
 

Total  MS= 
1 - N

TSS = 
1 - N
 SSTotal = 

1 - N
)y - y(

 = s
2

ijk2
y

∑∑∑
 

 
Further, note that 
 

 
Component 

 
Description 

 
=− )( yyijk  

 
Deviation of the individual score from the overall mean 

 
)( jkijk yy −  

 
Deviation of the individual score from the group mean, i.e. ijkε̂  

 
)( yy j −+  

 
Deviation of the jth row’s mean from the overall mean, i.e. jτ̂  

 
)( yyk −+  

 
Deviation of the kth column’s mean from the overall mean, i.e.  kλ̂

 
)( yyyy kjjk +−−+  

 
Deviation of “combination” mean from row and column means; the 
interaction, i.e.  jk)ˆˆ( λτ

 
Note that we are using the same trick we did before of adding and then subtracting the 

same terms. 
Hence, ΣΣΣ 2)( yyijk − can be broken out as follows (any seemingly omitted terms 

conveniently work out to be zero): 
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JK - N = d.f.
 

Error, SS = )y - y( ijk
2

jkijk =∑∑∑∑∑∑ 2ε̂

 

 
This is analogous to SS Within from 1-way ANOVA.  This represents the deviation of 
individuals from the means of others who have the same value on the row and column variables 
(e.g. are of the same sex and race); that is, this represents the component of the scores that 
cannot be accounted for by group membership.  The d.f. arise from the fact that there are N 
cases, and J*K means have to be estimated.  Also, 
 

1 - J = d.f.
 

Rows, SS = )y - y( j
2

j
=∑∑∑∑∑∑ 2τ̂

 

 
 

1 - K = d.f.
 

Columns, SS = )y - y( k
2

k =∑∑∑∑∑∑ 2λ̂

 

 
 

1) - 1)(K - (J = d.f.
 

n,Interactio SS = )y + y - y - y( jk
2

kjjk =∑∑∑∑∑∑ 2)ˆˆ( λτ

 

 
 
Other useful partitionings include 

 

2

Re

 K - d.f. = J +
 

sidual ction - SS SS InteraSS Total -SS Main = 
 

 
Note also that, when all cell frequencies are equal, i.e. the number of observations in each 
combination of treatments is the same, 
 

SS Main = SS Columns + SS Rows. 
 
This will not necessarily be true otherwise.  The fact that it is true in a balanced design is one of 
its main advantages.   
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Another useful partitioning is 
 

 

1- d.f. = JK 
 

 SS ErrorSS Total -nteractionain + SS Ined = SS M SS ExplaiSS Cells = =
 

 
When all cell frequencies are equal,  
 

SS Cells = SS Columns + SS Rows + SS Interaction. 
 
 
Finally, note that, 

 

1 - N = JK - N + K - J - 1 + JK + 1 - K + 1 - J = d.f.
 

 SS Errored SS ExplainS Errorctions + S SS Intera SS Main +Total SS = +=
 

 
 

Again, when all cell frequencies are equal,  
 

Total SS = SS Columns + SS Rows + SS Interaction + SS Error. 
 

E. When doing statistical inference, we assume that 
T for each treatment combination JK, the random error terms εijk are - 

N(0, σ2); the variance σ2 is the same for each treatment combination. 
T the random error terms are independent 

 
II. TESTS OF INTEREST: 
 

A. H0: (τλ)jk = 0 for all j, k 
HA: (τλ)jk <> 0 for at least 1 j, k 

 
This is a test of whether there are any interaction effects; the appropriate test statistic is 
 

Error MS
nInteractio MS = 

JK) - Error/(N SS
1) - 1)(K - n/(JInteractio SS = F JK-N1),-1)(K-(J  

 
If the null hypothesis is true, F - F([J - 1][K - 1], N - JK) 
 

B. H0: τ1 = τ2 =... = τJ = 0 
HA: At least 1 τj <> 0 

 

 
 Two-Way Analysis of Variance - Page 4 



This tests whether there are any row effects.  The appropriate test statistic is 
 

Error MS
Rows MS = 

JK) - Error/(N SS
1) - Rows/(J SS = F JK-N1,-J  

 
If the null hypothesis is true, F - F([J - 1], N - JK) 
 

C. H0: λ1 = λ2 =... = λK = 0 
HA: At least 1 λk <> 0 

 
This tests whether there are any column effects.  The appropriate test statistic is 
 

Error MS
Columns MS = 

JK) - Error/(N SS
1) - Columns/(K SS = F JK-N1,-K  

 
If the null hypothesis is true, F - F([K - 1], N - JK). 
 

NOTE: The last two tests are primarily of interest if you conclude that interaction effects 
are not significant.  If, on the other hand, you conclude that the interaction effects do not equal 
zero, then you know both treatments (i.e. the row and column effects) are significant. 
 

D. H0: All τ’s and λ’s = 0 
HA: At least one τ or λ does not equal 0 

 
This tests whether any of the main effects (i.e. row or column effects; or, non-interaction effects) 
are nonzero.  The appropriate test statistic is 
 

Error MS
 MainMS = 

JK) - Error/(N SS
2) - K +  Main/(JSS = F JK-N2,-K+J  

 
 
If the null hypothesis is true, F - F([J + K - 2], N - JK). 
 

E. H0: All τ’s, λ’s, and (τλ)’s = 0 
HA: At least one τ, λ, or (τλ) does not equal 0 

 
This tests whether there are any effects at all.  If the null hypothesis is true, then every 

cell in the table will have the same true mean.  The appropriate test statistic is 
 

Error MS
Cells MS = 

JK) - Error/(N SS
1) - Cells/(JK SS = F JK-N1,-JK  

 
If the null hypothesis is true, F - F([JK - 1], N - JK). 
 

 
 Two-Way Analysis of Variance - Page 5 



III. ROW, COLUMN, AND INTERACTION EFFECTS – EXAMPLES 
 
 What are interaction effects?  Here are some substantive examples: 
 

T Medicines A and B may have no effect when either is taken alone.  But, the two 
together may have an effect.  “The whole is different from the sum of the parts.”   

 
T Another example: we might find that greater income leads to greater fertility for those 

who want children, and lower fertility for those who do not want children.  We say that the effect 
of income is dependent on desires, or that desires and income interact in determining fertility. 

 
T Good teachers and small classrooms might both encourage learning.  A good teacher in 

a small classroom might be especially effective.  The whole is greater than the sum of the parts. 
 

Following are hypothetical 2-way ANOVA examples.  The dependent variable is income 
(in thousands of dollars), the row variable is gender (Male or Female), the column variable is 
type of occupation (A, B, or C).  Unless otherwise stated, assume that frequencies are equal for 
all cells. 
 
1. Row (Gender) effects only. 
 

 
 

 
Occ A 

 
Occ B 

 
Occ C 

 
 

 
Male 

 
µMA = 18 
τλMA = 0 

 
µMB = 18 
τλMB = 0 

 
µMC = 18 
τλMC = 0 

 
µM = 18 
τM =  2 

 
Female 

 
µFA = 14 
τλFA = 0 

 
µFB = 14 
τλFB = 0 

 
µFC = 14 
τλFC = 0 

 
µF = 14 
τF = -2 

 
 

 
µA = 16 
λA =  0 

 
µB = 16 
λB =  0 

 
µC = 16 
λC =  0 

 
µ = 16 

 
The 2 rows differ, but the three columns are all the same.  Within each occupation, men 

make $4,000 more on average than do women; each of the three occupations pays equally well. 
 
 
2. Column (Occupation) effects only. 
 

 
 

 
Occ A 

 
Occ B 

 
Occ C 

 
 

 
Male 

 
µMA = 12 
τλMA = 0 

 
µMB = 16 
τλMB = 0 

 
µMC = 20 
τλMC = 0 

 
µM = 16 
τM =  0 

 
Female 

 
µFA = 12 
τλFA = 0 

 
µFB = 16 
τλFB = 0 

 
µFC = 20 
τλFC = 0 

 
µF = 16 
τF =  0 

 
 

 
µA = 12 
λA = -4 

 
µB = 16 
λB =  0 

 
µC = 20 
λC =  4 

 
µ = 16 
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The three columns differ, but the two rows are the same.  Occupation C pays better than 

B and B pays better than A.  Within each occupation, however, men and women make the same. 
 
3. Row and column effects. 
 

 
 

 
Occ A 

 
Occ B 

 
Occ C 

 
 

 
Male 

 
µMA = 14 
τλMA = 0 

 
µMB = 18 
τλMB = 0 

 
µMC = 22 
τλMC = 0 

 
µM = 18 
τM =  2 

 
Female 

 
µFA = 10 
τλFA = 0 

 
µFB = 14 
τλFB = 0 

 
µFC = 18 
τλFC = 0 

 
µF = 14 
τF = -2 

 
 

 
µA = 12 
λA = -4 

 
µB = 16 
λB =  0 

 
µC = 20 
λC =  4 

 
µ = 16 

 
Both the rows and columns differ.  Within each occupation, men make $4,000 more on 

average than women do.  Within each gender, those in occupation C average $4,000 more than 
those in B, and those in B average $4,000 more than those in A. 
 
4. Interaction effects I. 
 

 
 

 
Occ A 

 
Occ B 

 
Occ C 

 
 

 
Male 

 
µMA =  15 
τλMA = -1 

 
µMB =  15 
τλMB = -1 

 
µMC =  21 
τλMC =  2 

 
µM = 17 
τM =  1 

 
Female 

 
µFA =  15 
τλFA =  1 

 
µFB =  15 
τλFB =  1 

 
µFC =  15 
τλFC = -2 

 
µF = 15 
τF = -1 

 
 

 
µA = 15 
τA = -1 

 
µB = 15 
τB = -1 

 
µC = 18 
τC =  2 

 
µ = 16 

 
Five of the six cells have the same mean.  However, for some reason, the combination of 

males and occupation C results in high male earnings. 
 
5. Interaction effects II - differing magnitudes of effects. 
 

 
 

 
Occ A 

 
Occ B 

 
Occ C 

 
 

 
Male 

 
µMA =  12 
τλMA = -1 

 
µMB =  16 
τλMB = -1 

 
µMC =  26 
τλMC =  2 

 
µM =  18 
τM =   2 

 
Female 

 
µFA =  10 
τλFA =  1 

 
µFB =  14 
τλFB =  1 

 
µFC =  18 
τλFC = -2 

 
µF =  14 
τF =  -2 

 
 

 
µA =   11 
λA =   -5 

 
µB =   15 
λB =   -1 

 
µC =   22 
λC =    6 

 
µ =   16 
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Men make more than women, and the advantage is especially great in occupation C.  Or, 

those in occupation C make more than those in other occupations, and the advantage is 
especially great for men. 

 
6. Interaction effects III - differing directions of effects. 
 

 
 

 
Occ A 

 
Occ B 

 
Occ C 

 
 

 
Male 

 
µMA =  18 
τλMA = +2 

 
µMB =  16 
τλMB =  0 

 
µMC =  14 
τλMC = -2 

 
µM =  16 
τM =   0 

 
Female 

 
µFA =  14 
τλFA = -2 

 
µFB =  16 
τλFB =  0 

 
µFC =  18 
τλFC =  2 

 
µF =  16 
τF =   0 

 
 

 
µA =   16 
λA =    0 

 
µB =   16 
λB =    0 

 
µC =   16 
λC =    0 

 
µ =   16 

 
In this example, the effect of gender depends on occupation.  Males do better than 

women in Occupation A but worse in occupation C; in Occupation B there is no difference.  Or, 
occupation C is better paying for women but not for men, whereas for occupation A the opposite 
is true.  Note that, if you only looked at the main effects, you would erroneously conclude that 
gender and occupation have no effects on income, when in reality they do have effects but the 
effects work in opposing directions. 
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IV. Computational Procedures - Two-Way Anova – Balanced Designs 
 
Let A = row variable, B = column variable, J = number of categories for A, K = number of 
categories for B, TAj = the sum of the scores in group Aj, TBk = the sum of the scores in group Bk, 
TAjBk is the sum of the scores for the observations which fall in both groups Aj and Bk (there are 
J*K of these totals), nAj = number of observations in group Aj, nBk = number of observations in 
group Bk, nAjBk is the number of observations which fall in both groups Aj and Bk.    [NOTE: 
While I will show you how to do the raw data calculations, in practice they are tedious enough 
that I generally would not expect you to do them by hand, at least on an exam. You should know 
how to do the other formulas, however, as they show how the different parts of the ANOVA 
table are related to each other.] 
 
Note that many (albeit not all) of the formulas for raw data calculations and Sums of Squares 
assume a balanced design, i.e. all cell frequencies are equal for each possible combination of 
values for the row and column variables.  Computations are somewhat more complicated when 
designs are not balanced. The Mean Square formulas and the F tests are accurate regardless of 
whether the design is balanced or not.   
 
 
Formula 

 
Explanation 

 
 

Raw Data Calculations (Balanced Design) 
 

 
(1) = (ΣΣΣyijk)2/n =  2µ̂N

 
Sum all the observations.  Square the result.  
Divide by the total number of observations. 

 
(2) = ΣΣΣyijk

2
 
Square each observation.  Sum the squared 
observations. 

 
(3) = Σ TAj

2/nAj

 
Add up the values for the observations for group 
A1.  Square the result.  Divide by the number of 
observations in group A1.  Repeat for each 
category of A.  Add the results for  each of the J 
groups together. 
 

 
(4) = Σ TBk

2/nBk

 
Add up the values for the observations for group 
B1.  Square the result.  Divide by the number of 
observations in group B1.  Repeat for each 
category of B.  Add the results for  each of the K 
groups together. 

 
(5) = ΣΣ TAjBk

2/nAjBk

 
Add up the values for the observations which fall 
in both group A1 and B1.  Square this value, and 
divide by nA1B1.  Repeat for each of the J*K 
combinations, and sum the results. 
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Sums of Squares Calculations (Balanced Design) 

 
 
SS Total = (2) - (1) 

 
Total sum of squares 

 
SS Rows = (3) - (1) 

 
Row sum of squares.  This is also sometimes 
called SSA. 

 
SS Columns = (4) - (1) 

 
Column sum of squares.  Also called SSB. 

 
SS Interaction =  
(5) + (1) - (3) - (4) = 
SS Total - SS Rows - SS Columns - SS Error 
= SS Total – SS Main – SS Error 

 
Interaction sum of squares.  Also called SSAB. 
 It may be easier to use the second formula.  

 
SS Error = (2) - (5) = SS Total - SS Cells 

 
Error sum of squares.  It is analogous to SS 
Within in one-way ANOVA. Also called SS 
Residual.   

 
SS Main = (3) + (4) – [2 * (1)] = 
SS Columns + SS Rows = 
SS Total – SS Error – SS Interaction  

 
Main effects Sum of Squares.  Also called 
SSA+B

 
SS Cells = (5) - (1) =  
SS Main + SS interaction =  
SS Total - SS Error. 

 
This is analogous to SS Between in one-way 
ANOVA. Also called SS Explained. 

 
Mean Square Calculations (Balanced or unbalanced) 

 
 
MS Total = s2 = 
SS Total/(n-1) 

 
Remember that MS Total = s2

 
MS Rows =  
SS Rows/(J-1) 

 
Also called MSA.  

 
MS Columns =  
SS Columns/(K-1) 

 
Also called MSB.  

 
MS Interaction = 
SS Interaction/((J-1)(K-1)) 

 
Also called MSAB

 
MS Main = SS Main/(J + K - 2)  

 
Also called MSA+B  

 
MS Cells = 
SS Cells/((J*K)-1) 

 
Also called MS Explained. 

 
MS Error =  
SS Error/ (n - J*K) 

 
Also called MS Residual. 
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Possible F Tests (Balanced or unbalanced): 

 
 
MS Rows/MS Error 

 
Do means differ across categories of the row 
variable, i.e. do tau’s differ?  d.f. = J-1, n-J*K 
 

 
MS Columns/MS Error 

 
Do means differ across categories of the 
column variable, i.e. do lambdas differ?  d.f. = 
K-1, n-J*K 

 
MS Interaction/MS Error 

 
Do any of the interaction effects differ from 
zero?  d.f. = (J-1)(K-1), n-J*K 

 
MS Main/MS Error  

 
Are any of the row or column effects nonzero? 
 d.f. = J + K - 2, n-J*K 

 
MS Cells/MS Error 

 
Are there any differences anywhere across 
groups?  d.f. = (JK-1), N-JK. 

 
 
An ANOVA table often looks something like this (with the computed values substituted). 
 

 
Source 

 
SS 

 
D.F. 

 
Mean Square 

 
F 

 
A + B (or 
Main Effects) 

 
SS Main 

 
J + K - 2 

 
SS Main    
(J + K - 2) 

 
MS Main
MS Error 

 
A (or main 
effect of A) 

 
SS Rows 

 
J - 1 

 
SS Rows
(J - 1) 

 
MS Rows
MS Error 

 
B (or main 
effect of B) 

 
SS Columns 

 
K - 1 

 
SS Columns
(K - 1) 

 
MS Columns
MS Error 

 
AB (or 2-way 
interaction) 

 
SS Interaction 

 
(J - 1) * 
(K - 1) 

 
SS Interaction
(J -1) (K - 1) 

 
MS Interaction
MS Error 

 
A + B + AB 
(or explained) 

 
SS Cells 

 
(J * K) - 1 

 
SS Cells
(J * K) - 1 

 
MS Cells
MS Error 

 
Error (or 
residual) 

 
SS Error 

 
N - (J * K) 

 
SS Error
(N - J * K) 

 
 

 
Total 

 
SS Total 

 
N - 1 

 
SS Total
(N - 1) 
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V. EXAMPLES. 
 
1. A researcher is interested in differences in income by Region (North, South, East, and 
West) and Religion (Catholic, Protestant, Other).  She draws a sample of ten people for each 
combination of region and religion.  She finds that SS Rows = 200, SS Columns = 170, SS 
Interaction = 100, and s2 = 16.81.  Construct the Anova Table, and indicate which effects are 
significant at the .05 level. (NOTE: Region is the row variable.) 
 
Solution.  Again the design is balanced.  You don’t have to do any work with the raw data here; 
instead, you have to understand how the different parts of the ANOVA table are related to each 
other.  Let us begin with what we are told: 
 

 
Source 

 
SS 

 
D.F. 

 
Mean Square 

 
F 

 
A + B (or Main 
Effects) 

 
SS Main =  

 
J + K - 2 =  

 
SS Main     =  
(J + K - 2) 

 
MS Main =  
MS Error 

 
A (or main effect of 
A) 

 
SS Rows = 200 

 
J - 1 =  

 
SS Rows =  
(J - 1) 

 
MS Rows =  
MS Error 

 
B (or main effect of 
B) 

 
SS Columns = 

170 

 
K - 1 =  

 
SS Columns =  
(K - 1) 

 
MS Columns =  
MS Error 

 
AB (or 2-way 
interaction) 

 
SS Intraction = 

100 

 
(J - 1) * 
(K - 1) =  

 
SS Intrction =  
(J -1)(K - 1) 

 
MS Intrction =  
MS Error 

 
A + B + AB (or 
explained) 

 
SS Cells =  

 
(J * K) - 1 =  

 
SS Cells    =  
(J * K) - 1 

 
MS Cells =  
MS Error 

 
Error (or residual) 

 
SS Error =  

 
N - (J * K) =  

 
SS Error    =  
(N - J * K) 

 
 

 
Total 

 
SS Total =  

 
N - 1 =  

 
SS Total = 16.81 
(N - 1) 

 
 

 
We are also told J = 4 (there are 4 regions), K = 3 (3 religions).   
 
T We can deduce that N = J*K*10 = 120.   
T Recall that s2 = MS Total, and that MS Total = SS Total/(n-1) 

 ==> SS Total = s2 * (N - 1) = 16.81 * 119 = 2000.  
T SS Main is obtained by adding SS Rows + SS Columns = 200 + 170 = 370.   
T SS Cells is obtained by adding up SS Columns + SS Rows + SS Interactions  

= 200 + 170 + 100 = 470.  
T SS Error is obtained by computing SS Total - SS Cells = 2000 - 470 = 1530.   
T The remaining quantities in the table are obtained by filling in the appropriate values for 

the formulas.  Hence, we get (* = significant at the .05 level): 
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Source 

 
SS 

 
D.F. 

 
Mean Square 

 
F 

 
A + B (or Main 
Effects) 

 
SS Main = 370 

 
J + K - 2 = 5 

 
SS Main     = 74.00 
(J + K - 2) 

 
MS Main = 5.22* 
MS Error 

 
A (or main effect of 
A) 

 
SS Rows = 200 

 
J - 1 = 3 

 
SS Rows = 66.67 
(J - 1) 

 
MS Rows = 4.71* 
MS Error 

 
B (or main effect of 
B) 

 
SS Columns = 170 

 
K - 1 = 2 

 
SS Columns = 85.00 
(K - 1) 

 
MS Columns = 6.0* 
MS Error 

 
AB (or 2-way 
interaction) 

 
SS Intraction = 100 

 
(J - 1) * 
(K - 1) = 6 

 
SS Intrction = 16.67 
(J -1)(K - 1) 

 
MS Intrction = 1.18 
MS Error 

 
A + B + AB (or 
explained) 

 
SS Cells = 470 

 
(J * K) - 1 = 11 

 
SS Cells    = 42.73 
(J * K) - 1 

 
MS Cells = 3.02* 
MS Error 

 
Error (or residual) 

 
SS Error = 1530 

 
N - (J * K) = 108 

 
SS Error    = 14.17 
(N - J * K) 

 
 

 
Total 

 
SS Total = 2000 

 
N - 1 = 119 

 
SS Total = 16.81 
(N - 1) 

 
 

 
Conclusion.  Interaction effects are not significant, other effects are. 
 
2. A consumer research firm wants to compare three brands of radial tires (X, Y, and Z) in 
terms of tread life over different road surfaces.  Random samples of four tires of each brand are 
selected for each of three surfaces (asphalt, concrete, gravel).  A machine that can simulate road 
conditions for each of the road surfaces is used to find the tread life (in thousands of miles) of 
each tire.  Construct an ANOVA table and conduct F-tests for the presence of nonzero brand 
effects, road surface effects, and interaction effects. 
 

 
Surface/ Brand 

 
X 

 
Y 

 
Z 

 
Asphalt 

 
36, 39, 39, 38 

 
42, 40, 39, 42 

 
32, 36, 35, 34 

 
Concrete 

 
38, 40, 41, 40 

 
42, 45, 48, 47 

 
37, 33, 33, 34 

 
Gravel 

 
34, 32, 34, 35 

 
34, 34, 30, 31 

 
36, 35, 35, 33 

 
Solution.  I’ll show you how to work this by hand (just in case your life ever depends on it) 
although on an exam I’d be more likely to give you something like problem 1 and/or give you 
finished results and ask you to interpret them. More critically, I’ll show you how to do this in 
SPSS.   
 
Note that the design is balanced.  Let A = Road surface, B = Brand.  HINT:  It is legitimate to 
subtract a constant from EVERY observation.  This will not affect any of the values in the 
ANOVA table, and it often makes the calculations simpler.  I will subtract 30 from each 
observation, yielding the following table: 
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Surface/ Brand 

 
X 

 
TAjBk

 
Y 

 
TAjBk

 
Z 

 
TAjBk

 
TAj

 
Asphalt 

 
6  9 
9  8 

 
32 

 
12 10 

9 12 

 
43 

 
2  6 
5  4 

 
17 

 
92

 
Concrete 

 
8 10 

11 10 

 
39 

 
12 15 
18 17 

 
62 

 
7  3 
3  4 

 
17 

 
118

 
Gravel 

 
4  2 
4  5 

 
15 

 
4  4 
0  1 

 
9 

 
6  5 
5  3 

 
19 

 
43

 
TBk

 
 

 
86 

 
 

 
114 

 
 

 
53 

 
253

 
(1) = (ΣΣΣyijk) 2/n = 2532/36 = 1778.03 
(2) = ΣΣΣyijk

2 = 62 + 92 + 122 + ... + 32 = 2451 
(3) = Σ TAj

2/nAj = 922/12 + 1182/12 + 432/12 = 2019.75 
(4) = Σ TBk

2/nBk = 862/12 + 1142/12 + 532/12 = 1933.42 
(5) = ΣΣ TAjBk

2/nAjBk = 322/4 + 392/4 + ... + 192/4 = 2370.75 
 
SS Total = (2) - (1) = 2451 - 1778.03 = 672.97 
SS Rows = (3) - (1) = 2019.75 - 1778.03 = 241.72 
SS Columns = (4) - (1) = 1933.42 - 1778.03 = 155.39 
SS Interaction = (5) + (1) - (3) - (4) =  

2370.75 + 1778.03 - 2019.75 - 1933.42 = 195.61 
SS Main = SS Rows + SS Columns = 397.11 
SS Cells = (5) - (1) = 592.72 
SS Error = (2) - (5) = 80.25 
 
ANOVA TABLE: 
 
SOURCE SS D.F. MEAN SQUARE F 

     

A + B 397.11 4 99.28 33.43* 

A 241.72 2 120.86 40.69* 

B 155.39 2 77.70 26.16* 

AB 195.61 4 48.90 16.46* 

A+B+AB 592.72 8 74.09 24.95* 

Error 80.25 27 2.97  

     

Total 672.97 35 19.23  

 
* = significant at the .05 level. 
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NOTE:  
• To test for the presence of nonzero road effects, the degrees of freedom = 2,27 and we 

accept H0 if F # 3.34.   
• To test for the presence of nonzero brand effects, d.f. = 2,27 and we accept H0 if F # 

3.34.   
• To test for the presence of nonzero interaction effects, d.f. = 4,27 and we accept H0 if F # 

2.72.   
• To test for the presence of any nonzero effects, d.f. = 8, 27 and we accept H0 if F # 2.21.   

 
SPSS Solution.  In SPSS, the ANOVA command can be used for 2-way ANOVA problems.  
Alas, you have to enter the syntax directly – you can’t do it with the pull-down menus – but it 
isn’t too hard.  If you are bound and determined to use the pull-down menus, you can use the 
UNIANOVA routine – which I personally find a little confusing but I haven’t used it very much. 
 To use UNIANOVA, select ANALYZE/ GENERAL LINEAR MODEL/ UNIVARIATE.  Here 
is how you can work the above problem using the ANOVA routine. 
 
DATA LIST FREE / Surface Brand Treadlif. 
BEGIN DATA. 
1 1 36 
1 1 39 
1 1 39 
1 1 38 
1 2 42 
1 2 40 
1 2 39 
1 2 42 
1 3 32 
1 3 36 
1 3 35 
1 3 34 
2 1 38 
2 1 40 
2 1 41 
2 1 40 
2 2 42 
2 2 45 
2 2 48 
2 2 47 
2 3 37 
2 3 33 
2 3 33 
2 3 34 
3 1 34 
3 1 32 
3 1 34 
3 1 35 
3 2 34 
3 2 34 
3 2 30 
3 2 31 
3 3 36 
3 3 35 
3 3 35 
3 3 33 
END DATA. 
 
VARIABLE LABELS SURFACE 'Type of Surface' BRAND 'Brand of tire' 
                TREADLIF 'Tread life (1000s of miles)'. 
VALUE LABELS SURFACE 1 'Asphalt' 2 'Concrete' 3 'Gravel'/ 
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             BRAND 1 'X' 2 'Y' 3 'Z'. 
ANOVA /VARIABLES TREADLIF BY SURFACE (1,3) BRAND (1,3)/ Method = Experimental. 
 
ANOVA 

ANOVAa

397.111 4 99.278 33.402 .000

241.722 2 120.861 40.664 .000

155.389 2 77.694 26.140 .000

195.611 4 48.903 16.453 .000

592.722 8 74.090 24.928 .000
80.250 27 2.972

672.972 35 19.228

(Combined)
SURFACE  Type of
Surface
BRAND  Brand of tire

Main
Effects

SURFACE  Type of
Surface * BRAND 
Brand of tire

2-Way
Interactions

Model
Residual
Total

TREADLIF  Tread
life (1000s of miles)

Sum of
Squares df Mean Square F Sig.

Experimental Method

TREADLIF  Tread life (1000s of miles) by SURFACE  Type of Surface, BRAND  Brand of tirea. 
 

 
 

 
VI. N-WAY ANOVA. 
 
It is also possible to address problems where there are more than 2 treatments, e.g. look at the 
effect of race, sex and religion on income.  Things start to get more complicated, of course, but it 
can be done.  Particularly confusing is the fact that you can have 3-way and higher interactions, 
and it can be difficult to interpret what these mean.   
 
VII. ANALYSIS OF COVARIANCE. 
 
Finally, I’ll just briefly note that sometimes problems involve “treatments” (or independent 
variables) that have both nominal and interval-level measurement.  For example, we might be 
interested in the effects of sex, race, and years of education on income.  One way to do this is 
through Analysis of Covariance.  In ANCOVA, continuous variables (in this case education) are 
referred to as covariates.  However, such problems can also be addressed via regression 
techniques, and since that is the more common strategy in Sociology that is where we will focus 
our attention.  But, if you ever find yourself reading a lot of work in psychology or education or 
related fields, you may come across references to ANCOVA. 
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